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ABSTRACT
Travel time estimation (TTE) is one of the most critical modules at
Baidu Maps, which plays a vital role in intelligent transportation
services such as route planning and navigation. During the driving
en route, the navigation system of BaiduMaps can provide real-time
estimations on when a user will arrive at the destination. It auto-
matically recalculates and updates the remaining travel time from
the driver’s current position to the destination (hereafter referred
to as remaining route) every few minutes. The previously deployed
TTE model at Baidu Maps, i.e., ConSTGAT [4], takes the remaining
route as well as the current time as input and provides the corre-
sponding estimated time of arrival. However, it ignores the route
that has been already traveled from the origin to the driver’s cur-
rent position (hereafter referred to as traveled route), which could
contribute to improving the accuracy of time estimation. In this
work, we believe that the traveled route conveys valuable evidence
that could facilitate the modeling of driving preference and take
that into consideration for the task of en route travel time estima-
tion (ER-TTE). This task is non-trivial because it requires adapting
fast to a user’s driving preference using a few observed behaviors
in the traveled route. To this end, we frame ER-TTE as a few-shot
learning problem and consider the observed behaviors in the trav-
eled route as training examples while the future behaviors in the
remaining route as test examples. To tackle the few-shot learning
problem, we propose a novel model-based meta-learning approach,
called SSML, to learn the meta-knowledge so as to fast adapt to a
user’s driving preference and improve the time estimation of the
remaining route. SSML leverages the technique of self-supervised
learning, which is equivalent to generating a significant number
of synthetic learning tasks, to further improve the performance.
Extensive offline tests conducted on large-scale real-world datasets
collected from Baidu Maps demonstrate the superiority of SSML.
The online tests before deploying in production were successfully
performed, which confirms the practical applicability of SSML.
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Figure 1: Travel time estimation function at Baidu Maps.
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1 INTRODUCTION
Travel time estimation (TTE) is one of the most critical modules at
Baidu Maps, which plays a vital role in intelligent transportation
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services such as route planning and navigation. TTE aims to predict
the travel time in accordance with a given route and departure time,
which greatly helps the drivers to know the traffic condition in
advance and plan their trips wisely. Figure 1(a) shows an example
of the TTE function at Baidu Maps, where the driver departing
from the origin could arrive at the destination within 1 hour 3
minutes. In order to help a driver arrive at her destination timely, it
is important to provide not only a once-only time estimation before
the user starts her trip but, more importantly, real-time estimations
with the ability of self-updating during the user’s driving en route.
Figure 1(b) shows an example of the en route travel time estimation
(ER-TTE) function at Baidu Maps, where the driver could arrive
at the destination within 50 minutes from the current position.
This function automatically recalculates and updates the remaining
travel time from the driver’s current position to the destination
(hereafter referred to as remaining route) every few minutes. In this
paper, we address the task of ER-TTE, which aims to predict the
travel time in accordance with (1) the remaining route, (2) departure
time, and (3) the route that has been already traveled from the origin
to the driver’s current position (hereafter referred to as traveled
route) during a user’s driving en route. From the above illustrations,
it is easily seen that ER-TTE is just a special case of TTE. The only
difference is whether the traveled route is taken into consideration
when estimating travel time.

To predict the en route travel time, the previously deployed TTE
model at Baidu Maps, i.e., ConSTGAT [4], takes the remaining route
as well as the current time as input and provides the corresponding
estimated time of arrival. However, it ignores the traveled route,
which conveys valuable evidence that could facilitate the modeling
of driving preference. We believe that the observed behaviors in
the traveled route could infer the driver’s future behaviors in the
remaining route. The effect of the observed behaviors in the traveled
route is illustrated by Figure 2. Before driver A and driver B start
their trips, the navigation service estimates the entire route’s travel
time, which is 50 minutes. Then, as driver B drove faster than
driver A in the first 5 minutes, it is likely that driver B would drive
faster than driver A in their remaining routes. Consequently, the
remaining travel time of driver A (55 minutes) will be much longer
than that of driver B (40 minutes). In order to provide the user with
accurate and reliable real-time estimations during her driving en
route, it is important to take the traveled route into consideration.

The task of ER-TTE is challenging because it requires adapting
fast to a user’s driving preference using a few observed behaviors
in the traveled route. A user’s driving preferences are unstable and
may vary from one circumstance to another. Moreover, as a route
generally contains dozens or hundreds of adjacent road segments,
the observed behaviors in the traveled route are insufficient for
estimating the travel time of the road segments in the remaining
route, especially when the user has just started her trip. To this
end, we frame ER-TTE as a few-shot learning problem and consider
the observed behaviors in the traveled route as training examples
while the future behaviors in the remaining route as test examples.

To tackle the few-shot learning problem, we propose a novel
model-based meta-learning approach, called SSML, to learn the
meta-knowledge to fast adapt to a user’s driving preference. SSML
is based on our previous work [4]. We regard the route, the depar-
ture time, and a user’s observed behaviors in the traveled route as

Figure 2: Illustration of the effect of the observed behaviors
in the traveled route.

a circumstance and then estimate the remaining route’s travel time.
Each circumstance can be seen as a learning task in the settings
of meta-learning. The meta-knowledge learned from a large num-
ber of learning tasks can contribute to fast adapting to the users’
driving preferences in new circumstances. Besides, SSML leverages
the technique of self-supervised learning, which is widely used
in natural language processing. To improve the performance, we
further design a self-supervised learning method that estimates
part of the traveled behaviors from the other part of traveled be-
haviors, which is equivalent to generating a significant number of
synthetic learning tasks for meta-learning. Extensive offline tests
conducted on large-scale real-world datasets collected from Baidu
Maps demonstrate the superiority of SSML.

Our contributions can be summarized as follows:
• Potential impact:We propose a novel model-based meta-
learning approach, named SSML, as an industrial solution
to the task of en route travel time estimation (ER-TTE). To
the best of our knowledge, this work is a pioneering attempt
at exploring the practical applicability of using the meta-
learning paradigm to address this task.

• Novelty:The design and implementation of SSML are driven
by the novel ideas that take advantage of the observed behav-
iors in the traveled route to infer a user’s driving preference,
and regard the task of ER-TTE as a few-shot learning prob-
lem by applying model-based meta-learning paradigm with
self-supervised learning technique to fast adapt to the user’s
driving preference en route.

• Technical quality: Extensive offline tests conducted on
large-scale real-world datasets collected from Baidu Maps
demonstrate the superiority of SSML. The online tests also
confirm the practical applicability of SSML.

• Reproducibility: We have released the source codes of Con-
STGAT [4] and SSML at https://github.com/PaddlePaddle/
Research/tree/master/ST_DM/KDD2020-ConSTGAT/ and
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https://github.com/PaddlePaddle/Research/tree/master/ST_
DM/KDD2021-SSML/.

2 PROBLEM DEFINITION
In this section, we first present the task of ER-TTE and formalize ER-
TTE in the meta-learning settings. Then, we introduce the model-
based meta-learning.

2.1 En Route Travel Time Estimation
2.1.1 TTE. The TTE function of a navigation service estimates
the travel time of a given route � according to the departure time � .
Generally, a route consists of dozens or hundreds of adjacent road
segments. For the sake of clarity, “road segments” will be short
for "links" hereafter. We represent a route � as a sequence of links
� = [�1, �2, · · · , ��� ], where �� is the number of links in the route.
Formally, the task of TTE takes a route � consisting of �� links and
a departure time t as input and outputs a sequence of the link’s
travel times � = [�1, �2, · · · , ��� ]. An example is defined as a triple
(�, �, �), where � denotes the time, � denotes the link to be estimated,
and � denotes the travel time of link � . We estimate the travel time
� of link � with respect to the request time � .

2.1.2 ER-TTE. When a user drives en route, the ER-TTE function
of a navigation service recalculates the route’s remaining travel
times whenever it receives a request. We denote the time sequence
that the requests are made as [�1, �2, · · · , ��], where� denotes the
number of the requests. To recalculate the remaining travel time,
we consider the request time, the user’s current position, and the
user’s driving behaviors in the traveled route. Assume that the
navigation service receives a request at time � , the route � can
be divided into two parts, ��

��������
= [�1, �2, · · · , ���−1] consisting

of the links in the traveled route, and ��
������

= [��� , ���+1, · · · , ��� ]
consisting of the links in the remaining route. Here, �� is the index of
the first link in ��

������
. We regard the user’s past driving behaviors

as � �
��������

= [�1, �2, · · · , ���−1], where each �� is the actual travel
time of each �� ∈ ��

��������
. Formally, the task of ER-TTE takes a

route � consisting of �� links, a request time t, and the observed
driving behaviors � �

��������
as input and outputs a sequence of

travel times � �
������

= [��� , ���+1, · · · , ��� ], where each �� is the
predicted travel time of each �� ∈ ��

������
.

2.2 Meta-Learning Settings
Each request is taken as a circumstance, and we estimate the re-
maining travel time under different circumstances. For the conve-
nience of formulation, we define a circumstance as a triple � =
(�, �, � �

��������
), where � is the route, � is the request time, and

� �
��������

is the travel times of the links in the traveled route. For
that circumstance, ER-TTE estimates the remaining travel times
� �
������

according to the observed behaviors � �
��������

in the trav-
eled route.

Each circumstance can be seen as a few-shot learning problem
as the number of observed behaviors in the traveled route under a
circumstance is limited. We consider each circumstance of ER-TTE
as a learning task in the meta-learning settings. Following previous
meta-learning studies [5], given a circumstance � = (�, �, � �

��������
),

we refer to the learning task’s training set as the support set and
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Figure 3: Demonstration of a given circumstance � =
(�, �4, � �4

��������
). At current request time �4, the user arrives

at link �7. We regard the observed behaviors collected from
the traveled route at past request times �1, �2, and �3 as sup-
port examples to train the meta-learner and regard the be-
haviors in the remaining route at current request time �4 as
query examples to evaluate their travel times.

its test set as the query set. The demonstration of the support set
and the query set of a given circumstance is shown by Figure 3.

The support set of a circumstance � = (�, �, � �
��������

) consists of
the user’s observed behaviors � �

��������
in the traveled route with

respect to the past request times. We use � ′ to denote a past request
time (� ′ < � ). Given a link in the traveled route, as the features
(e.g., traffic conditions and request times) for different past request
times are different, we can construct multiple support examples
for the same link. We take links in the traveled route as well as
the observed behaviors with respect to different past request times
as support examples. Formally, the support set of a circumstance
� = (�, �, � �

��������
) is defined as:

��
� = {(� ′, � � , � � ) |� ′ < �, ��

′
≤ � < �� }. (1)

More concretely, for a support example (� ′, � � , � � ), at past request
time � ′, the travel times of the links in ��

′
������

= [���′ , ���′+1, · · · , ��� ]
are estimated by the navigation service. Thus, � should satisfy
��

′ ≤ � . Similarly, at current request time � , only the ground-truth
travel times of the links in ��

��������
= [�1, �2, · · · , ���−1] can be

collected and used for training. Thus, � should satisfy � ≤ �� .
Take Figure 3 as an instance, the blue grids represent the support

examples for circumstance � = (�, �4, � �4
��������

) with current request
time �4. From the figure, we can see that the observed behaviors
in past request times [�1, �2, �3] are taken as the support examples.
The support set consists of the �1 ∼ �6, �3 ∼ �6, and �4 ∼ �6 for past
request times �1, �2, and �3, respectively.

The query set of a circumstance � = (�, �, � �
��������

) consists of
the user’s future behaviors � �

������
in the remaining route with
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respect to current request time 𝑡 . Formally, the query set 𝐷𝑄𝑐 of
circumstance 𝑐 = (𝑟, 𝑡, 𝑌 𝑡

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑
) is defined as:

𝐷
𝑄
𝑐 = {(𝑡, 𝑙 𝑗 , 𝑦 𝑗 ) |𝑖𝑡 ≤ 𝑗}. (2)

For a query example (𝑡, 𝑙 𝑗 , 𝑦 𝑗 ), at current request time 𝑡 , the travel
times of the links in 𝑟𝑡

𝑟𝑒𝑚𝑎𝑖𝑛
= [𝑙𝑖𝑡 , 𝑙𝑖𝑡+1, · · · , 𝑙𝑛𝑟 ] are estimated by

the navigation service. Thus, 𝑗 should satisfy 𝑖𝑡 ≤ 𝑗 .
In Figure 3, the red grids represent the query examples for cir-

cumstance 𝑐 = (𝑟, 𝑡4, 𝑌 𝑡4𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 ) with current request time 𝑡4. The
query set consists of the 𝑙7 ∼ 𝑙9 for current request times 𝑡4.

2.3 Model-Based Meta-Learning
Here we introduce the model-based meta-learning method that
learns the meta-knowledge and adapts it to new circumstances. A
circumstance in ER-TTE is taken as a learning task in this paper.

The source tasks and target tasks in meta-learning settings are
as follows. The source tasks D𝑠𝑟𝑐 = {(𝐷𝑆𝑐 , 𝐷

𝑄
𝑐 )} is used for meta-

training. The target tasksD𝑡𝑔𝑡 = {(𝐷𝑆𝑐 , 𝐷
𝑄
𝑐 )} is used for evaluating

the meta-learner. We learn the meta-knowledge from the source
tasks and evaluate the adaption abilities by the target tasks.

To simplify the notations, for circumstance 𝑐 , we use (𝑥𝑆
𝑐,𝑖
, 𝑦𝑆
𝑐,𝑖
)

to denote the 𝑖-th support example and its label, where 𝑥𝑆
𝑐,𝑖

= (𝑡, 𝑙)
consisting of request time 𝑡 and link 𝑙 , and 𝑦𝑆

𝑐,𝑖
is the travel time.

Similarly, we use (𝑥𝑄
𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
) to indicate the 𝑖-th query example and

its label. Thus, for circumstance 𝑐 = (𝑟, 𝑡, 𝑌 𝑡
𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

), its support

set and the query set are redefined as 𝐷𝑆𝑐 = {(𝑥𝑆
𝑐,𝑖
, 𝑦𝑆
𝑐,𝑖
) |𝑛

𝑆
𝑐

𝑖=1} and

𝐷
𝑄
𝑐 = {(𝑥𝑄

𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
) |𝑛

𝑄
𝑐

𝑖=1}, respectively, where 𝑛
𝑆
𝑐 and 𝑛

𝑄
𝑐 denote the

sizes of 𝐷𝑆𝑐 and 𝐷𝑄𝑐 .
We use the similar setting of the model-based meta-learner pro-

posed by Mishra et al. [11]. During the meta-training process, we
minimize the meta-learner’s objective function by:

L(D𝑠𝑟𝑐 ;\ ) =
1

|D𝑠𝑟𝑐 |
∑

(𝐷𝑆
𝑐 ,𝐷

𝑄
𝑐 ) ∈D𝑠𝑟𝑐

1

|𝐷𝑄𝑐 |

|𝐷𝑄
𝑐 |∑

𝑖=1
𝐿(𝐷𝑆𝑐 , 𝑥

𝑄

𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
;\ ),

(3)
where \ is the parameters to be optimized. Here, we use Huber loss
[8], a widely-used loss function for regression problems, as the loss
function, which is defined as:

𝐿(𝐷𝑆𝑐 , 𝑥
𝑄

𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
;\ ) = ℎ𝑢𝑏𝑒𝑟_𝑙𝑜𝑠𝑠 (𝑓\ (𝐷𝑆𝑐 , 𝑥

𝑄

𝑐,𝑖
), 𝑦𝑄

𝑐,𝑖
), (4)

where 𝑓\ (𝐷𝑆𝑐 , 𝑥
𝑄

𝑐,𝑖
) is the function that represents the model to be

learned, which takes the support set𝐷𝑆𝑐 aswell as the query example
𝑥
𝑄

𝑐,𝑖
as input and predicts the travel time. Besides, the Huber loss

ℎ𝑢𝑏𝑒𝑟_𝑙𝑜𝑠𝑠 (𝑦,𝑦) is defined as:

ℎ𝑢𝑏𝑒𝑟_𝑙𝑜𝑠𝑠 (𝑦,𝑦) =


1
2
(𝑦 − 𝑦)2 |𝑦 − 𝑦 | < 𝛿,

𝛿 ( |𝑦 − 𝑦 | − 1
2
𝛿) otherwise.

(5)

Here, 𝛿 is a hyper-parameter of Huber loss to control the impact of
the outliers. 𝑦 represents the predicted travel time, and 𝑦 represents
the ground truth.
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Figure 4: Representation learning of the support examples
and query examples of a given circumstance 𝑐.

During the test process, we evaluate the trained meta-learner’s
performance on target tasks D𝑡𝑔𝑡 .

3 SELF-SUPERVISED META-LEARNER
We first present representation learning that outputs the represen-
tations of the support examples and query examples. Then, we
describe a novel model-based meta-learner, called SSML, which in-
corporates self-supervised learning to the meta-learning paradigm
to further enhance the ability of learning the meta-knowledge.

3.1 Representation Learning
We learn the representations of the support and query examples,
which are the input of the meta-learner. The representations are
generated according to the observed driving behaviors in the trav-
eled route and the features used in ConSTGAT [4], such as road
network, departure time, and traffics.

To predict the travel time of a query example of a given circum-
stance 𝑐 = (𝑟, 𝑡, 𝑌 𝑡

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑
), we utilize the support set 𝐷𝑆𝑐 and the

query example 𝑥𝑄
𝑐,𝑖

itself as input. Then, support set 𝐷𝑆𝑐 and the

query set 𝐷𝑄𝑐 of circumstance 𝑐 can be represented by:

𝐷𝑆𝑐 = [(𝑥𝑆𝑐,1, 𝑦
𝑆
𝑐,2), (𝑥

𝑆
𝑐,2, 𝑦

𝑆
𝑐,2), · · · , (𝑥

𝑆

𝑐,𝑛𝑆𝑐
, 𝑦𝑆
𝑐,𝑛𝑆𝑐

)],

𝐷
𝑄
𝑐 = [(𝑥𝑄

𝑐,1, 𝑦
𝑄

𝑐,2), (𝑥
𝑄

𝑐,2, 𝑦
𝑄

𝑐,2), · · · , (𝑥
𝑄

𝑐,𝑛
𝑄
𝑐

, 𝑦
𝑄

𝑐,𝑛
𝑄
𝑐

)] .
(6)

We use 3DGAT, a 3D-attentionmechanism proposed in our previ-
ous work [4], to capture the spatial-temporal relations of the traffic
conditions. Then, we use a multi-layer perceptron to learn the
representations of the support and query examples. The network
structure to learn the representations of the examples is shown
by Figure 4. Given a circumstance 𝑐 , the representation of support
example 𝑥𝑆

𝑐,𝑖
and query example 𝑥𝑄

𝑐,𝑖
are defined as:

𝑓 𝑆𝑐,𝑖 = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑐𝑎𝑡 (3𝐷𝐺𝐴𝑇 (𝑥𝑆𝑐,𝑖 ), 𝑥
𝑆
𝑐,𝑖 )),

𝑓
𝑄

𝑐,𝑖
= 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑐𝑎𝑡 (3𝐷𝐺𝐴𝑇 (𝑥𝑄

𝑐,𝑖
), 𝑥𝑄

𝑐,𝑖
)),

(7)

where 3𝐷𝐺𝐴𝑇 denotes the 3D-attention mechanism, 𝑀𝐿𝑃 denotes
multi-layer perceptron, and𝐶𝑜𝑛𝑐𝑎𝑡 denotes concatenation operator.
The representations of support examples 𝐹𝑆𝑐 = [𝑓 𝑆

𝑐,1, 𝑓
𝑆
𝑐,2, · · · , 𝑓

𝑆

𝑐,𝑛𝑆𝑐
]
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Figure 5: The framework of self-supervised meta-learner combining supervised learning and self-supervised learning. In su-
pervised learning, we estimate the labels of the query examples from the support examples. In the self-supervised learning,
we estimate the labels of the randomly sampled support examples from the other support examples.

and their labels 𝑌𝑆𝑐 = [𝑦𝑆
𝑐,1, 𝑦

𝑆
𝑐,2, · · · , 𝑦

𝑆

𝑐,𝑛𝑆𝑐
], as well as the represen-

tations of the query examples 𝐹𝑄𝑐 = [𝑓𝑄
𝑐,1, 𝑓

𝑄

𝑐,2, · · · , 𝑓
𝑄

𝑐,𝑛
𝑄
𝑐

] are taken
as input of the meta-learner.

3.2 Self-Supervised Meta-Learner
We combine supervised learning and self-supervised learning in
the meta-learner for ER-TTE. The framework of self-supervised
meta-learner, SSML, is shown by Figure 5. We first present super-
vised learning that directly learns the meta-knowledge and then
describe the approach that constructs self-supervised learning tasks
to enhance the meta-learner’s ability.

3.2.1 Supervised Learning. The left part of Figure 5 demonstrates
the way that SSML learns the meta-knowledge by supervised learn-
ing. Given a circumstance 𝑐 , in order to fast adapt to the user’s
driving preference, we use the attention mechanism [17] to capture
the associations between the support examples and query exam-
ples. We aim at learning the user’s driving preference from her
observed driving behaviors in the traveled route to predict her
future behaviors in the remaining route.

First, we introduce observed behavior 𝑏𝑆
𝑐,𝑖

in the traveled route

and future behavior 𝑏𝑄
𝑐,𝑖

in the remaining route. Here, the observed
behavior is denoted by 𝑏𝑆

𝑐,𝑖
= (𝑓 𝑆

𝑐,𝑖
, 𝑦𝑆
𝑐,𝑖
), while the future behavior is

denoted by 𝑏𝑄
𝑐,𝑖

= (𝑓𝑄
𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
). Then, for circumstance 𝑐 , the sequence

of observed behaviors is represented by 𝐵𝑆𝑐 = (𝐹𝑆𝑐 , 𝑌𝑆𝑐 ) and the
sequence of future behaviors is represented by 𝐵

𝑄
𝑐 = (𝐹𝑄𝑐 , 𝑌

𝑄
𝑐 ).

Since the labels of the query examples are unknown to the model,
we introduce placeholder [𝑚𝑎𝑠𝑘] to denote the unknown label and
𝑀 to denote the sequence of unknown labels. Then, the future
behaviors are rewritten asM(𝐵𝑄𝑐 ) = (𝐹𝑄𝑐 , 𝑀), which replaces the

unknown labels of query examples𝑌𝑄𝑐 by𝑀 , where squigglesM(·)
is used to distinguish the rewritten behavior sequence from the
original one.

For attention mechanism, we regard the sequence of a user’s
future behaviors M(𝐵𝑄𝑐 ) as the queries and the sequence of the
user’s observed behaviors 𝐵𝑄𝑐 as the keys and values, so as to learn
the user’s driving preference. We can leverage the observed behav-
iors to predict the user’s future behaviors. After that, we apply MLP
and predict the travel times of all the query examples. This process
can be formalized as:

ˆ
𝑌
𝑄
𝑐 = 𝑀𝐿𝑃 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(M(𝐵𝑄𝑐 ), 𝐵𝑆𝑐 , 𝐵𝑆𝑐 )), (8)

where ˆ
𝑌
𝑄
𝑐 denotes the predicted travel times of the query examples,

and 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 denotes attention layer. We use 3-layer MLP with
ReLU [13] as the activation. The hidden size of the MLP is set to 64.
The formulation of attention layer 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is defined as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( (QW
𝑄 ) (KW𝐾 )𝑇
√
𝑑

) (VW𝑉 ), (9)

where Q, K, and V are matrices and denote the queries, keys, and
values of the attention mechanism, respectively.W𝑄 ,W𝐾 , andW𝑉

are parameter matrices to be learned. 𝑑 is the hidden dimension of
the attention mechanism. By applying attention mechanism, the
query examples are able to learn from similar support examples to
adjust their travel times.

3.2.2 Self-Supervised Learning. On the other hand, the right part
of Figure 5 shows the self-supervised learning component of SSML.
Inspired by the mask language model from BERT [2], we apply
self-supervised learning to learn from the support set itself. We
construct a great number of self-supervised learning tasks by pre-
dicting the labels of the subset of the observed behaviors from the
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Table 1: Statistics of the datasets.

Basic information 𝑡 = 5 min 𝑡 = 10 min 𝑡 = 15 min
City #Links #Source tasks #Target tasks Support Query Support Query Support Query

Taiyuan 216,208 2,556,593 714,464 10.572 61.806 41.130 44.921 82.671 32.791
Huizhou 346,396 2,136,949 608,723 10.544 49.180 37.200 34.606 67.739 26.652
Hefei 376,310 2,189,020 552,924 9.217 41.618 30.485 30.885 54.604 24.618

other observed behaviors. For example, given the observed behav-
ior set 𝐵𝑆𝑐 , we randomly sample a subset. We denote the sampled
observed behaviors by P(𝐵𝑆𝑐 ) and the other observed behaviors
by Q(𝐵𝑆𝑐 ), and 𝐵𝑆𝑐 = P(𝐵𝑆𝑐 ) + Q(𝐵𝑆𝑐 ). The indexes of the sampled
observed behaviors in P(𝐵𝑆𝑐 ) are denoted by [𝑝1, 𝑝2, · · · , 𝑝𝑚] and
the indexes of the other observed behaviors in Q(𝐵𝑆𝑐 ) are denoted
by [𝑞1, 𝑞2, · · · , 𝑞𝑚−𝑛𝑆𝑐 ], as shown by Figure 5. We assume the labels
in P(𝐵𝑆𝑐 ) are unknown and replace the labels by 𝑀 . We estimate
their labels ˆP(𝑌𝑆𝑐 ) according to the other observed behaviorsQ(𝐵𝑠𝑐 ).
Then, for the attention mechanism, we regard the replaced behavior
subset M(P(𝐵𝑆𝑐 )) as the queries and the other observed behaviors
Q(𝐵𝑆𝑐 ) as the keys and values, just like the supervised learning
method presented. We predict the travel times of the sampled sub-
set P(𝐵𝑆𝑐 ) by:

ˆP(𝑌𝑆𝑐 ) = 𝑀𝐿𝑃 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(M(P(𝐵𝑆𝑐 )),Q(𝐵𝑆𝑐 ),Q(𝐵𝑆𝑐 ))), (10)

where the definitions of𝑀𝐿𝑃 and 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 are the same as Eq. 8.
For each circumstance, we can sample multiple subsets of the

observed behaviors. This enables us to construct multiple self-
supervised learning tasks, which can contribute to improving the
ability of adapting fast to a user’s driving preference.

3.2.3 Discussion. The parameters of the 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 and 𝑀𝐿𝑃 are
shared between supervised learning (estimating query examples
from support examples) and self-supervised learning (estimating
subset of support examples from the other support examples). Both
can contribute to learning the meta-knowledge that learns personal-
ized adaption from only a few labeled examples. The subset P(𝐵𝑆𝑐 )
in self-supervised learning is an analogy to 𝐵𝑄𝑐 in supervised learn-
ing, while the other support behaviors Q(𝐵𝑆𝑐 ) in self-supervised
learning is an analogy to 𝐵𝑆𝑐 in supervised learning.

Besides, it enables us to design a great number of self-supervised
learning tasks, which is equivalent to adding a significant number
of synthetic learning tasks in meta-learning. The synthetic learning
tasks play the role of data enhancement. SSML can be applied to
other problems with similar settings.

4 EXPERIMENTS
4.1 Experimental Settings
We collected the records of ER-TTE in three cities: Taiyuan, Huizhou,
and Hefei in China, ranging from Sep 1st to Sep 28th, 2019, from
Baidu Maps. Records of the first three weeks are used for training,
and those of the last week are used for evaluation. The statistics of
the datasets are shown in Table 1. We use over two million source
tasks for each city to train the models and hundreds of thousands of
target tasks to evaluate the meta-models. Then, we produce three

datasets for each city with different request times, 𝑡 = 5 min, 𝑡 = 10
min, and 𝑡 = 15 min. For example, for dataset 𝑡 = 5 min, all the
request times of corresponding circumstances are set to 5 minutes.
The last six columns of Table 1 present the average sizes of the
support sets and query sets with different request times. As request
time 𝑡 goes up, there are more support examples and fewer query
examples for each city.

Furthermore, given a circumstance 𝑐 = (𝑟, 𝑡, 𝑌 𝑡
𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

), instead
of directly estimating the travel time of each link in the remaining
route 𝑟𝑡

𝑟𝑒𝑚𝑎𝑖𝑛
, we adjust the label of the examples. We first calculate

the bias between the ground-truth travel time and the travel time
predicted by ConSTGAT before the user starts the trip. Then, to
reduce the bias’s variance, we normalize bias by dividing the length
of the corresponding link and taking it as the label.

For each circumstance, we use root mean square error (RMSE)
and Mean Average Error (MAE) to evaluate the performance. Given
a circumstance 𝑐 , we calculate RMSE score and MAE score by:

RMSE( ˆ
𝑦
𝑄

𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
) =

√√√√
1

𝑛
𝑄
𝑐

𝑛
𝑄
𝑐∑
𝑖=1

(𝑦𝑄
𝑐,𝑖

− ˆ
𝑦
𝑄

𝑐,𝑖
)2,

MAE( ˆ
𝑦
𝑄

𝑐,𝑖
, 𝑦
𝑄

𝑐,𝑖
) = 1

𝑛
𝑄
𝑐

𝑛
𝑄
𝑐∑
𝑖=1

|𝑦𝑄
𝑐,𝑖

− ˆ
𝑦
𝑄

𝑐,𝑖
|.

(11)

We calculate the mean of RMSE scores and MAE scores among
all target tasks to evaluate the performance of all the methods.

4.2 Baseline Methods
We evaluate SSML against the following strong baselines.

• ConSTGAT. The previous deployed model ConSTGAT [4]
applies a spatial and temporal graph neural network to cap-
ture the mutual relations between the spatial and temporal
information for TTE. We use ConSTGAT to estimate the
travel times of the remaining route dynamically.

• Fine-tuning (FT). We fine-tune the model parameters of Con-
STGAT on each circumstance with the support examples to
estimate the travel times of the query examples. The learning
rate for FT is set to 0.01.

• Recurrent-Based Meta-Learning (R-ML). Similar to previous
model-based meta-learning methods [11, 16], R-ML uses bidi-
rectional long short-term memory (LSTM) [6] to capture the
meta-knowledge. R-ML takes the same learned representa-
tions as SSML does.
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Table 2: RMSE scores of SSML and other methods on three real-world datasets with different request times.

Method
Taiyuan Huizhou Hefei

� = 5 min � = 10 min � = 15 min � = 5 min � = 10 min � = 15 min � = 5 min � = 10 min � = 15 min

ConSTGAT 33.425 35.153 37.460 44.558 45.202 46.537 45.698 44.992 46.001
FT 33.408 35.084 37.376 44.523 44.945 46.318 45.656 44.775 45.701

R-ML 33.669 34.838 36.525 45.014 44.275 44.338 46.106 43.053 42.548
A-ML 33.521 30.724 26.537 45.022 36.412 28.871 45.723 32.374 25.406
SSML 33.502 30.154 26.038 44.594 35.222 28.470 45.471 32.228 24.725

Table 3: MAE scores of SSML and other methods on three real-world datasets with different request times.

Method
Taiyuan Huizhou Hefei

� = 5 min � = 10 min � = 15 min � = 5 min � = 10 min � = 15 min � = 5 min � = 10 min � = 15 min

ConSTGAT 18.609 21.104 24.046 28.179 30.605 33.050 32.822 33.722 34.917
FT 18.594 21.049 23.979 28.142 30.374 32.852 32.768 33.519 34.640

R-ML 18.706 21.186 23.353 29.275 30.062 30.616 32.694 31.225 31.246
A-ML 18.200 17.636 16.084 28.628 23.729 18.853 31.782 22.429 17.601
SSML 18.338 17.607 15.798 27.751 22.915 18.773 31.672 22.669 17.329

• Attention-Based Meta-Learning (A-ML). The framework of
A-ML is almost the same as that of SSML, except that A-
ML only applies supervised learning without using self-
supervised learning. A-ML is an ablation version of SSML.

For all the methods, including SSML, we set the embedding sizes
of all the attribute to 8, and set the hidden sizes of attention and
LSTM to 32. For SSML, we randomly mask 30% of the labels of the
support examples for each circumstance. We implemented all the
methods by PaddlePaddle1, an open-source deep-learning platform
maintained by Baidu. We apply stochastic gradient descent (SGD)
to learn all the methods, and the learning rate is set to 0.1.

4.3 Offline Tests
To evaluate the effectiveness of the proposed SSML, we conducted
offline tests to compare the performance of SSML and other meth-
ods on three real-world datasets, Taiyuan, Huizhou, and Hefei,
with different request times. Table 2 and Table 3 show the RMSE
scores and MAE scores of different methods on three cities with
different request times. From the results, we make the following
observations.

(1) We can see that ConSTGAT performs the worst among all
methods on all cities, as it does not consider the observed behaviors
in the traveled route. This confirms the importance of taking the
traveled route into consideration to improve the accuracy of time
estimation.

(2) FT works better than ConSTGAT because it leverages the
observed behaviors by fine-tuning, which further shows the impor-
tance of considering the traveled route.

(3) The model-based meta-learners, i.e., R-ML, A-ML, and SSML,
perform much better than ConSTGAT and FT due to the learned
meta-knowledge, which enables them to fast adapt to new circum-
stances. A-ML and SSML outperforms R-ML in terms of � = 10

1The official site is at https://www.paddlepaddle.org.cn/.

min and � = 15 min. Compared with R-ML that uses recurrent
network, both A-ML and SSML use attention mechanism to capture
the mutual relations of support examples and query examples. This
demonstrates that the query example can learn from similar support
examples directly and effectively by the attention mechanism.

(4) SSML significantly outperforms other methods in terms of � =
10 min and � = 15 min. This shows the effectiveness of combining
self-supervised learning with meta-learning, which enables it to
better learn the meta-knowledge.

(5) The results of different methods on three cities in terms
of � = 5 min are similar. A possible reason is that the observed
behaviors in a circumstance in terms of � = 5 min only contain
short-distance information, making it difficult to make accurate
long-distance predictions.

!"#$%&'()$

Figure 6: Navigation system for ER-TTE by applying SSML
to ER-TTE at Baidu Maps.

4.4 Practical Applicability
4.4.1 Navigation System. Before deploying SSML in production,
we design a system that adds the SSML module to the navigation
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(c) Hefei

Figure 7: The performance of A-ML and SSML with different numbers of support examples in terms of 𝑡 = 15min on different
datasets. The RMSE scores of A-ML and SSML refers to the primary ordinate. The Δ𝑅𝑀𝑆𝐸 = RMSEA-ML − RMSESSML refers to
the secondary ordinate.

(a) Attention weight matrix

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
speed limit 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5

number of lanes 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
start cross 2 4 4 1 4 2 2 2 2 4 2 2 2 2 2 2 2 1
end cross 2 1 1 4 2 4 4 2 4 2 1 2 2 4 2 2 2 2

ground-truth label -23 29 -38 -1 -32 0 39 120 -42 -47 -2 2 -30 -4 -35 -1 -21 -30

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
speed limit 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4

number of lanes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
start cross 2 4 1 2 2 2 1 2 4 1 2 2 2 2 4 4
end cross 2 2 2 4 4 1 1 4 1 4 2 2 4 2 1 2

predicted label -16 -26 -28 0 -42 5 5 39 35 -5 -4 -2 0 3 -28 -41

Support examples

Query examples

(b) Features of support and query examples

Figure 8: Case analysis. When the predicted label of a query example is positive, the ground-truth labels of similar support
examples are usually positive, and vice versa.

service at Baidu Maps to validate the practicability of SSML. The il-
lustration of the navigation system for ER-TTE is shown by Figure 6.
When the navigation service receives a request, the previously de-
ployed model ConSTGAT takes the static features and dynamic
features as input and estimates the travel time. Then, SSML consid-
ers the predicted travel time by ConSTGAT, static features, dynamic
features, and the observed behaviors in the traveled route collected
from a user to estimate the travel time of the remaining route. Fi-
nally, the navigation service sends the predicted travel time to the
user to update the remaining travel time. This process repeats every
few minutes until the user finishes her trip.

4.4.2 Fast Adaption. We compare the fast adaption abilities of A-
ML and SSML with only a few support examples in the navigation
system for ER-TTE. We compare the RMSE scores of A-ML and
SSML with different sizes of support sets with request time 𝑡 = 15
min. For each circumstance, we keep the query set unchanged
and randomly select a subset of the support set to ensure that
the size of support set does not exceed a preset number. Figure 7

shows the RMSE scores of A-ML and SSML with different sizes of
support sets. It also shows the gap between the RMSE scores of
A-ML and SSML, i.e., ΔRMSE = RMSEA-ML − RMSESSML. We can
see that ΔRMSE is larger when the size of support sets is smaller
on Taiyuan and Huizhou. It demonstrates that SSML is able to learn
the meta-knowledge better with only a few support examples.

4.4.3 Case Analysis. To analyze the knowledge learned by SSML
in the navigation system, we present the attention weight matrix,
some of the features, and labels of a circumstance, as shown by Fig-
ure 8. The attention matrix in Figure 8(a) describes the associations
between the support examples and query examples. Figure 8(b)
shows the features of the support and query examples, the ground-
truth labels of the support examples, and the predicted labels of the
query examples. All the features shown are discretized, including
speed limit, the number of lanes, start cross, and end cross. For
most cases, when the predicted label of a query example is positive,
the ground-truth labels of similar support examples are positive,
and vice versa. This shows that SSML is able to estimate the label
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of a query example by capturing the information from the support
examples with similar features.

5 RELATEDWORK
Here we briefly review the closely related work in the fields of
travel time estimation and meta-learning.

5.1 Travel Time Estimation
TTE is an important module for mapping services. In recent years,
a lot of studies [1, 4, 10, 18–21, 24] successfully apply deep neural
networks on travel time estimation. Several studies [18, 21, 24] have
considered a user’s driving preference by extracting features from
the driver’s profile, such as driver id and driver type. However, they
mainly focus on the task of TTE rather than ER-TTE. Besides, they
have not considered the user’s observed behaviors in the traveled
route. By contrast, we study the problem of ER-TTE by taking the
traveled route into consideration, which has been shown to be
effective in improving the accuracy of time estimation.

5.2 Meta-Learning
Meta-learning [7] has made significant progress recently, which
is able to learn models that rapidly adapt to new environments.
Optimization-based [5, 14] andmodel-based [11, 12, 16]meta-learning
methods have drawn lots of attention. Optimization-based methods
adjust the optimization algorithm so that the learned model can
fast adapt to new tasks with a few examples. Model-based methods
design models for fast adaption by updating their parameters.

Meta-learning has been applied to intelligent transportation
[15, 22, 23] and recommender systems [3, 9, 25]. For intelligent trans-
portation, Zang et al. [23] apply value-based meta-reinforcement
learning to traffic signal control. Pan et al. [15] leverage the meta
knowledge extracted from geo-graph attributes to generate the
network’s parameter weights for urban traffic prediction. Yao et al.
[22] transfer the spatial-temporal information from the source cities
to the target cities. For recommender systems, the meta-learning
methods are mainly used to solve the cold-start problem. Lee et al.
[9] take each user in a recommender system as a task and apply
MAML [5] to adapt the cold-start users’ preferences.

Although the idea of applying meta-learning to learn a user’s
preference with insufficient user behaviors is conceptually similar,
our model is novel in that it successfully combines meta-learning
with self-supervised learning for data argumentation, which enables
the navigation service to provide more accurate time estimations
as quickly as possible while observing the user behaviors en route
for only a few minutes.

6 CONCLUSION
ER-TTE is a particular case of TTE, which dynamically estimates
the travel times of the remaining routes. We take the traveled route
into consideration, which can improve the accuracy of the time
estimation. ER-TTE is challenging due to the lack of sufficient
observed driving behaviors. To this end, we frame ER-TTE as a

few-shot learning problem and apply a novel model-based meta-
learning approach to adapt fast to the user’s driving preference.
We combine supervised learning and self-supervised learning to
enhance the ability of learning meta-knowledge. Extensive experi-
ments conducted on large-scale real-world datasets collected from
Baidu Maps demonstrate the superiority of SSML.
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