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ABSTRACT
The task of travel time estimation (TTE), which estimates the travel
time for a given route and departure time, plays an important role
in intelligent transportation systems such as navigation, route plan-
ning, and ride-hailing services. This task is challenging because
of many essential aspects, such as traffic prediction and contex-
tual information. First, the accuracy of traffic prediction is strongly
correlated with the traffic speed of the road segments in a route. Ex-
isting work mainly adopts spatial-temporal graph neural networks
to improve the accuracy of traffic prediction, where spatial and
temporal information is used separately. However, one drawback is
that the spatial and temporal correlations are not fully exploited to
obtain better accuracy. Second, contextual information of a route,
i.e., the connections of adjacent road segments in the route, is an es-
sential factor that impacts the driving speed. Previous work mainly
uses sequential encoding models to address this issue. However, it
is difficult to scale up sequential models to large-scale real-world
services. In this paper, we propose an end-to-end neural framework
named ConSTGAT, which integrates traffic prediction and contex-
tual information to address these two problems. Specifically, we
first propose a spatial-temporal graph neural network that adopts a
novel graph attention mechanism, which is designed to fully exploit
the joint relations of spatial and temporal information. Then, in or-
der to efficiently take advantage of the contextual information, we
design a computationally efficient model that applies convolutions
over local windows to capture a route’s contextual information and
further employs multi-task learning to improve the performance. In
this way, the travel time of each road segment can be computed in
parallel and in advance. Extensive experiments conducted on large-
scale real-world datasets demonstrate the superiority of ConSTGAT.
In addition, ConSTGAT has already been deployed in production
at Baidu Maps, and it successfully keeps serving tens of billions
of requests every day. This confirms that ConSTGAT is a practical
and robust solution for large-scale real-world TTE services.
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Figure 1: A screenshot of the travel time estimation function
at Baidu Maps mobile application.
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1 INTRODUCTION
The task of travel time estimation (TTE), which estimates the travel
time for a given route and departure time, plays an important role
in intelligent transportation systems such as navigation, route plan-
ning, and ride-hailing services. TTE is an indispensable function of
the navigation services in many mobile map applications such as
Baidu Maps, which is one of the largest mobile map applications
with over 340 million monthly active users worldwide by the end
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of December 2016.1 Figure 1 shows an example of the travel time
estimation function at Baidu Maps.2 As illustrated in this example,
it provides a user-friendly function that estimates the travel time
in accordance with the choices of route and departure time, which
greatly helps the drivers to know the traffic condition in advance
and plan their trips wisely. For example, the driver departing from
the origin could arrive at the destination within 1 hour by choosing
the route 1 and the departure time 13:15. In order to help drivers
to arrive at their destinations timely, it is important to develop a
TTE module that is able to provide accurate and reliable travel time
estimations.

TTE is challenging as there exists many aspects that could in-
fluence the accuracy of estimation, such as traffic prediction and
contextual information of a route (e.g., traffic lights and turns). First,
the accuracy of traffic prediction is strongly correlated with the
traffic speed of the road segments in a route, especially of the road
segments that are far from the origin. Existing approaches on traffic
prediction mainly adopt spatial-temporal graph neural networks
(STGNNs) [6, 7, 11, 22, 24] to model the road network, where spa-
tial and temporal information is used separately. However, one
drawback of them is that the spatial and temporal correlations are
not fully exploited to obtain better accuracy. Second, the contex-
tual information of a route, i.e., the connections of adjacent road
segments in the route, is an essential factor that impacts the driv-
ing speed. For example, a driver usually spends different times on
turning left and turning right. On one hand, the segment-based
approaches [1, 17, 18] estimate each road segment of a given route
independently, which are efficient as the travel time of each road
segment can be computed in parallel and in advance. However, they
ignore the contextual information of the route. On the other hand,
the end-to-end approaches [10, 16, 19, 23] consider the contextual
information of a route, which take all road segments in the route
as a whole by applying sequence encoding structures. However,
the main drawback of them is the high computation cost as the
recurrent-based structures have to deal with the road segments in
the route one-by-one in real time, and the situation would become
worse when a route contains hundreds of road segments.

In this paper, we propose an end-to-end neural framework named
ConSTGAT, which integrates traffic prediction and contextual infor-
mation to address these two problems. Specifically, we first propose
a spatial-temporal graph neural network that adopts a novel graph
attention mechanism, which is designed to fully exploit the joint
relations of spatial and temporal information. Then, in order to
efficiently take advantage of the contextual information, we de-
sign a computationally efficient model that applies convolutions
over local windows to capture a route’s contextual information and
further employs multi-task learning to improve the performance.
ConSTGAT also takes insights from the segment-based approaches,
which is able to preserve high inference efficiency by computing
the travel time of each road segment in parallel and in advance.

To verify the effectiveness of the proposed framework ConST-
GAT, we have conducted extensive experiments on large-scale real-
world datasets collected from Baidu Maps. The experimental results

1http://ir.baidu.com/static-files/e249a0f8-082a-4f8a-b60d-7417fa2f8e7e
2We translate the example from Chinese to English for the sake of understanding.

demonstrate that ConSTGAT significantly outperforms the main-
stream approaches in terms of multiple metrics. In addition, it has
already been deployed in production at Baidu Maps, which success-
fully keeps serving tens of billions of requests every day.

Our main contributions can be summarized as follows:
• Potential impact: We propose an end-to-end neural frame-
work as an industrial solution to the travel time estimation
function in mobile map applications. It is our first attempt
to deploy the framework into Baidu Maps to serve tens of
billions of requests every day.

• Novelty: The design and implementation of this framework
are driven by the novel ideas that fully exploit the joint
relations of spatial and temporal information with a spatial-
temporal graph attention network, as well as efficiently take
advantage of a route’s contextual information by applying
convolutions over local windows and multi-task learning.

• Technical quality: Extensive experiments conducted on
large-scale real-world datasets demonstrate the superiority
of the proposed framework. The successful deployment of
ConSTGAT at Baidu Maps further shows that it is a practical
and robust solution for large-scale real-world TTE services.

2 RELATEDWORK
2.1 Travel Time Estimation
The major categories of TTE are segment-based methods and end-
to-end methods.

The segment-based methods [1, 17, 18] predict the travel time of
each road segment in a route independently and then sum up all pre-
dicted times to get the total travel time of the route. These methods
are widely used in navigation services, as they are computation-
ally efficient in that the travel time of each road segment can be
calculated in parallel and in advance. Although the segment-based
approaches are efficient, they ignore the contextual information of
the route, especially for the junction of two adjacent road segments.

The end-to-end methods [16, 19, 23] take a route as a whole
and estimate the travel time of the route directly. They mainly
employ recurrent structures to capture the contextual information
(e.g., traffic lights and turns) of the route. The end-to-end methods
are more effective than the segment-based methods. Wang et al.
[16] consider the relations between road segments in a route by
convolution and stacked long-short term memory neural network
(LSTM). Similarly, Zhang et al. [23] leverage bi-directional LSTM
to capture the contextual information. Wang et al. [19] propose a
Wide-Deep-Recurrent model that combines the Wide&Deep model
and recurrent models, where LSTM is used to capture the contextual
information of the route. Although recurrent structures are capable
of learning the correlations between the road segments in a route,
their computation costs are too expensive for large-scale navigation
services. A route may contain hundreds or even thousands of road
segments, but the hidden states of the road segments in the route
are computed in sequence and cannot be computed in advance.
Thus, end-to-end methods are hard to scale up.

The proposed framework ConSTGAT takes advantage of both
segment-based methods and end-to-end methods, in which the
travel times of the road segments in a route are estimated simul-
taneously. To obtain the contextual information, we leverage the
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convolution structure and use the loss functions of the road seg-
ments as well as the entire route.

2.2 Spatial-Temporal Graph Neural Networks
Recently, there is increasing interest in graph neural networks
(GNNs) [5, 13, 20]. Lots of studies have applied GNNs to graph-based
problems such as computer vision, natural language processing,
recommender systems, and other domains by employing the graph
structures.

The rise of GNNs inspired the following work to employ spatial-
temporal GNNs (STGNNs) on traffic prediction [6, 7, 11, 21, 22,
24]. Compared with the canonical GNNs, STGNNs leverage both
spatial and temporal information. A typical STGNNfirst encodes the
geographic information by graph convolution network (GCN) [3] or
graph attention network (GAT) [14], and then encodes the temporal
information with LSTM, CNN, or attention mechanism. Although
these studies canmake use of spatial and temporal information, they
assume that the relations of geographic information and temporal
information are independent and do not consider the joint relations
of them. To address this problem, we propose a novel graph neural
network that encodes the geographic and temporal information
simultaneously, which is designed to fully capture the correlations
of spatial and temporal information.

3 PRELIMINARY
In this section, we formalize the problem of TTE, and then introduce
the features we used in the proposed framework.

3.1 Problem Definition
Road network: The road network is an essential component for
estimating the travel time of a given route. In this study, we define
the road network as a directed graph G = (L, E), where L is a
link set and E is an edge set. Link l ∈ L represents a road segment.
For the sake of convenience, “road segment” is referred to as “link”
hereafter. Edge ei j ∈ E denotes the edge connecting link li and link
lj , if link li and link lj share the same junction.

Route: A route r is a link sequence r = [l1, l2, · · · , lm ], where
m is the number of links in that route. Usually, a route contains
dozens of or hundreds of links. A navigation service produces
several candidate routes based on the corresponding road network.

Request: A request is represented by a pair req = (r , s), where
r is the route, and s is the departure time of the route. The task of
TTE is to estimate the travel time y of a request req.

Dataset: A dataset is defined as D = {(req(i),y(i))}ni=1, where
y(i) is the ground-truth travel time for request req(i), and n is the
number of requests in the dataset. For (req(i),y(i)) ∈ D, the travel
time of the j-th link l (i)j in route r (i) of request req(i) is denoted as

y
(i)
j , which is computed as y(i) =

∑m(i )

j=1 y
(i)
j .

3.2 Feature Extraction
We extract features from the road network, historical traffic condi-
tions, and background information for TTE.

Road network: The road network describes the relations be-
tween the links. The following information of each link is extracted
as the features for use: the id, the length, the width, the number of

lanes, the type, the speed limit, the type of crossing, and the kind
of traffic light. Moreover, the graph structure of the road network
is employed to describe geographic relations.

Historical traffic conditions: As the historical traffic condi-
tions have a significant effect on traffic prediction, several types
of traffic speeds at different time slots are taken as features. For
example, the median travel speed and the mean travel speed of a
given link l at time slot t are deduced from the traffic records in the
dataset, where a time slot is set to 5 minutes in this paper. Moreover,
the uncertainty of the collected historical traffic speeds also affects
the accuracy of traffic prediction. For this reason, the number of
collected travel speeds is leveraged.

Background information: TTE could be affected by lots of
background information. The departure time is one of the most im-
portant factors. The rush hours, weekdays, and other time-related
information are also extracted as features. We denote the back-
ground information of the i-th link in the route as x (B)i .

4 ConSTGAT
In this section, we detail the proposed end-to-end neural framework.

4.1 Framework
Figure 2 shows the architecture of the proposed framework Con-
STGAT, which consists of three modules: Contextual Information,
Traffic Prediction, and Integration. Traffic Predictionmodule adopts a
novel spatial-temporal graph attention network to capture the joint
relations of spatial and temporal information of the traffic condi-
tions. Contextual Information module and Integration module focus
on addressing the problem of contextual information of the route,
where Contextual Information module utilizes convolution struc-
tures to capture the relations of the adjacent links, and Integration
module employs multi-task learning to improve the performance.

Output

Network

Input

Traffic
Prediction

Contextual 
Information

route 
(sequence of links)

Integration

historical traffic 
conditions

background

travel time of the routetravel times of the links in the route

query

keys/values

Figure 2: Architecture of ConSTGAT.

4.2 Traffic Prediction
A link’s future traffic condition is strongly correlated with the
historical traffic conditions of the link itself as well as its neighbor
links. For example, traffic congestion on a link could have a high
probability of causing traffic congestion on its neighbor links in
a short time. Although there is a growing interest in predicting
traffic with spatial-temporal graph neural networks, where spatial
and temporal information is used separately. To fully exploit the
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joint relations of spatial and temporal information, we propose a
novel spatial-temporal graph attention network, which deals with
the geographic information and temporal information of the traffic
conditions simultaneously. We also introduce masking mechanism
to improve the robustness of the proposed model.

We denote the traffic conditions observed on graph G at time
slot t asCt and the traffic conditions observed on link l as ctl . Traffic
Prediction module takes historical traffic conditions, graph G, and
the departure time s as inputs to predict the future traffic conditions
of graph G:

[Cs−Th , · · · ,Cs−1;G] → [Ĉs , Ĉs+1, · · · , Ĉs+Tf −1], (1)

where Tf is the number of the predicted future time slots, while Th
is the number of the historical time slots used to train the model.

We detail the 3D-attentionmechanism used to capture the spatial-
temporal relations for traffic conditions, which is an extension of
graph attention network [15], and is illustrated in Figure 3.

First, we extract a spatial-temporal tensor. Given graph G =

(L, E), the neighbor set of link li ∈ L is defined as NB(li ) =
{lj |ei j ∈ E}. We assume that the future traffic condition of link li is
directly affected by the historical traffic conditions of itself and the
links nearby. The historical traffic conditions can be organized into
a matrix X (ST )

i ∈ R |NB(li ) |Th×d (ST )

, where |NB(li )| is the number
of neighbors for link li ,Th is the number of historical time slots, and
d(ST ) is the dimension of the features. To be specific, X (ST )

i,(j−1)Th+k
represents the traffic condition of the k-th time slot of the j-th
neighbor of link i with j ∈ [1,NB(li )] and k ∈ [1,Th ]. Moreover,
the features of the neighbor links (e.g., id and lane number) are
organized as matrix X

(S )
i ∈ R |NB(li ) |×d (S )

. The features of the
historical time slots are organized as matrix X (T ) ∈ RTh×d

(T )

. Here,
d(S ) and d(T ) are the dimensions of the features for the spatial
and temporal information, respectively. Then, matrices X (ST )

i , X (S )
i ,

and X (T ) are merged into a new spatial-temporal matrix X (MST )
i ∈

R |NB(li ) |Th×d (MST )

with d(MST ) = d(ST )+d(S )+d(T ) by expanding
matrices X (S )

i and X (T ):

X
(MST )
i, j,k = Concat(X (ST )

i,(j−1)Th+k
,X

(S )
i, j ,X

(T )
k ),

j ∈ [1,NB(li )],k ∈ [1,Th ],
(2)

whereConcat denotes a concatenation operation.MatrixX (MST )
i ∈

R |NB(li ) |Th×d (MST )

can be reshaped into a 3D-tensor X (MST )
i ∈

R |NB(li ) |×Th×d (MST )

, which is used as the spatial-temporal tensor
(abbr. ST-tensor) for the traffic conditions of the i-th link.

Then, we use attention mechanism [2] to obtain the relations
between the traffic conditions. We introduce a novel 3D-attention
setting to capture the joint relations of spatial and temporal in-
formation. In this setting, the combination of the contextual in-
formation x

(CI )
i,w and the background information x

(B)
i is taken as

the query of the attention mechanism. The details of x (CI )i,w will be
described in the following subsection. The vectors in ST-tensor
X
(MST )
i, j,k (j ∈ [1, |NB(li )|],k ∈ [1,Th ]) are taken as the keys and

values of the attention mechanism. To be specific, the 3D-attention

mechanism is formulated as

Qi = Dense(Concat(x (CI )i,w ,x
(B)
i )), (3)

Ki, j,k = Dense(X (MST )
i, j,k ), (4)

Vi, j,k = Dense(X (MST )
i, j,k ), (5)

f (Qi ,Ki, j,k ) =
QT
i · Ki, j,k√
d(H )

, (6)

α(Qi ,Ki, j,k ) =
exp(f (Qi ,Ki, j,k ))∑

j′,k ′exp(f (Qi ,Ki, j′,k ′))
, (7)

Attention(Qi ,Ki ,Vi ) =
∑

j,k
α(Qi ,Ki, j,k )Vi, j,k , (8)

where Dense denotes a fully-connected layer with an activation
function, and d(H ) denotes the hidden size of the attention mecha-
nism. Then, the relations between query and the historical traffic
condition for link li can be encoded asx

(TC)

i = Attention(Qi ,Ki ,Vi )
by Equation (8). For this reason, we call the proposed graph neural
network by 3D-attention mechanism “3DGAT”.

It is worth noting that 3DGAT can be employed to other spatial-
temporal applications as well. Compared with the vanilla spatial-
temporal graph neural networks, 3DGAT is elaborately designed to
fully exploit the joint relations of spatial and temporal information.

Sometimes, the traffic conditions may get lost due to weak net-
work signals or other reasons. To alleviate this problem, we em-
ploy masking mechanism to improve the robustness of the model.
Masking mechanism has been proven to be effective for improving
the task of language model pre-training in natural language pro-
cessing [4]. In the training phase, we assume some of the traffic
conditions are unknown to the model. To this end, we randomly
mask 10% of the historical traffic conditions. This means for request
req = (r , s), 10% of cti with i ∈ [1,m] and t ∈ [s − Th , s − 1] are
set to zero vectors. From the perspective of model training, adding
noise to a neural network can reduce overfitting and improve model
generalization. In the test phase, we use all the historical traffic
conditions to evaluate the performance of our model.

4.3 Contextual Information
We develop a computationally efficient method that applies convo-
lutions to capture the contextual information in Contexual Informa-
tion module, as well as leverages multi-task learning in Integration
module. The proposed method takes insights from the segment-
based methods, which is able to efficiently reduce the response time
of a request. Figure 4 shows the architecture of this method.

The contextual information of a route, such as the angle of two
adjacent links, the relationship between the main road and the aux-
iliary road, plays an important role in estimating the travel time of
the route. To capture the contextual information, we estimate the
travel time of each link by employing the information of other links
in the given route. To do this efficiently, we only consider the nearby
links of a link li in route r rather than all the links in r , which is
based on the observation that the remote links often have markedly
less impact than the nearby ones. To represent the nearby links, we
introduce sub-path pi,w = [li−w , · · · , li−1, li , li+1, · · · , li+w ] with
contextual window size w . If window size w = 0, only the infor-
mation of link li is used, which is equivalent to the setting of the
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Figure 4: Architecture of Contextual Information module
and Integration module.

segment-based methods. If window size w → ∞, all the links in
route r are taken into account, which is equivalent to the setting of
the vanilla end-to-end methods.

Convolutional neural network (CNN) [9] is an efficient method
to obtain the local dependencies. Thus, we use a convolutional layer
to encode local dependency, which is formulated as

x
(CI )
i,w = Dense(Concat(Emb(li−w ), · · · ,Emb(li ), · · · ,Emb(li+w ))), (9)

where Emb denotes a representation layer. The information of
sub-path pi,w with window sizew for link li is encoded as x (CI )i,w ∈

Rd
(CI )

, where d(CI ) represents the dimension of the contextual

information. The encoded contextual information of link li serves
as the inputs of Traffic Prediction module and Integration module.

As shown in Figure 4, Integrationmodule is responsible for aggre-
gating the outputs of the contextual information x

(CI )
i,w , the traffic

conditions x (TC)

i , and the background information x
(B)
i . It first

employs a concatenation layer and then multiple fully-connected
layers [12] to collect all the information needed to predict the travel
times of the links and the given route. Given request req = (r , s),
the travel time of link li in route r is predicted by

ŷi = MLP(Concat(x (CI )i,w ,x
(B)
i ,x

(TC)

i )), (10)

where MLP represents the multiple fully-connected layers.
Then, the predicted travel times of the links in the route are

summed up to obtain the predicted travel time of the route:

ŷ =
∑m

i=1
ŷi , (11)

where ŷ denotes the predicted travel time of the route.
To further improve the performance, we combine the segment-

based methods and the vanilla end-to-end methods by employing
the loss functions of both the links and the entire route.

Huber loss [8] is a widely used loss function for regression prob-
lems, which is able to alleviate the impact of the outliers in compar-
ison with square loss. It is used as the loss of the links Ll ink , which
is defined as

Ll ink (ŷi ,yi ) =


1
2
(ŷi − yi )

2 |ŷi − yi | < δ ,

δ (|ŷi − yi | −
1
2
δ ) otherwise,

(12)

where δ is a hyper-parameter.
We use the absolute percentage error (APE) as the loss function

of the entire route Lroute , which is defined as

Lroute (ŷ,y) =
|y − ŷ |

y
. (13)
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Then, we combine the loss functions of the links Ll ink and the
route Lroute :

L =
1
n

n∑
i=1

(
1

m(i)

m(i )∑
j=1

Ll ink (ŷ
(i)
j ,y

(i)
j ) + Lroute (ŷ

(i),y(i))). (14)

It is equivalent to synthesize the segment-based methods and
end-to-end methods. The model is trained by minimizing the ob-
jective function L.

The navigation service in Baidu Maps needs to serve tens of
billions of requests every day. Therefore, the response time of a
request is of great importance to user experience. However, existing
methods are hard to scale up since they mainly adopt sequence
encoding models, which do the computation in real time.

To reduce the response time of the service, we borrow the ideas
from the segment-based methods and elaborately design the pre-
diction process. The prediction process consists of two steps. In
the first step, we predict the travel times of all the links in L in
different situations and save the predicted travel times in a look-up
table. Specifically, for link l ∈ L, we estimate the travel times of
link l with different sub-paths P(l) and different departure time
slots T . Here, P(l) denotes the candidate sub-paths containing link
l , and T = {s, s + 1, s + 2, · · · , s + Tf − 1} denotes the candidate
departure time slots, whereTf is the number of candidate departure
time slots. All the travel times can be computed in parallel. In the
second step, when a request arrives, we look up the table that saves
the travel times to find the travel times of the corresponding links
with the situations, and then we sum up these travel times. In this
way, we can compute the travel times of the links with different
situations in advance and in parallel. Therefore, it is easy to deploy
the proposed method to large-scale real-world navigation services.

5 EXPERIMENTS
5.1 Experimental Settings
We compare ConSTGATwith several strong baseline methods using
real-world datasets. We collect a large number of routes and road
networks of the cities Taiyuan, Hefei, and Huizhou. The datasets
are sampled from the logs of Baidu Maps for the period spanning
from July 21st to Aug 31st, 2019. The data of the first four weeks
are used for model training, while the data of the last week are used
for evaluation. Table 1 shows the statistics of the datasets used in
the experiments.

We use three metrics including mean absolute percentage error
(MAPE), mean average error (MAE), and root mean square error
(RMSE) to evaluate all methods, which are widely used to evaluate
the accuracy of regression problems. They are defined as

MAPE(ŷ(i),y(i)) =
1
n

n∑
i=1

|y(i) − ŷ(i) |

y(i)
,

MAE(ŷ(i),y(i)) =
1
n

n∑
i=1

|y(i) − ŷ(i) |,

RMSE(ŷ(i),y(i)) =

√√
1
n

n∑
i=1

(y(i) − ŷ(i))2.

We set the embedding sizes of all attributes to 8. In Traffic Predic-
tion module, we adopted the traffic conditions at Th = 12 historical

time slots and set the hidden size of the 3D-attention mechanism
d(H ) = 32. In Contextual Information module, we set the number of
the filters to 32 and the default window sizew = 1. In Integration
module, we employ two-layer MLP, in which the output size of the
first fully-connected layer is set to 64. We predicted the travel times
of the links at Tf = 12 future time slots.

Table 1: Statistics of datasets for training and test.

Dataset Links Training
routes

Test
routes

Average links
per route

Taiyuan 216,208 3,207,830 876,580 62.16
Hefei 376,310 4,571,573 851,188 55.36

Huizhou 346,396 4,153,568 727,492 52.90

5.2 Methods for Comparison
We compare the proposed ConSTGAT with five baselines:

• AVG. We calculate the average traffic speeds of 2016 (=7
weekdays × 24 hours × 12) time slots in each city to estimate
the travel times of links with different departure time slots.
Given a request req = (r , s), we sum up the corresponding
estimated travel times of all the links in the route r .

• DeepTravel [23]. This is an end-to-end method. It first ex-
tracts spatial and temporal features and then employs bidi-
rectional LSTM and auxiliary tasks based on duel intervals.

• STANN [7]. This is a spatial-temporal graph neural network.
It first encodes the spatial information by graph attention,
and then encodes the temporal information by LSTM and
attention mechanism. However, standard STANN is not prac-
tical for our task because it considers the relations of all the
links in the graph for each link. In our experiments, we only
consider the relations to its neighbor links.

• DCRNN [11]. This is also a spatial-temporal graph neural
network. It first captures the spatial dependency by graph
convolution network (a special case of diffusion convolution
network), and then captures temporal dependency by LSTM.

• GAT+Attention. To verify whether the proposed network
3DGAT is superior to existing spatial-temporal networks,
we develop a model named GAT+Attention to conduct an
ablation test. This new model first aggregates the spatial in-
formation by graph attention network, and then aggregates
the temporal information by attention mechanism. 3DGAT
and GAT+Attention differ only in one modality: 3DGAT con-
siders the spatial and temporal information simultaneously,
while GAT+Attention considers them separately.

Among these methods, STANN, DCRNN, and GAT+Attention
employ graph neural networks to estimate the travel times of the
links rather than that of an entire route. To make them comparable,
we use the same setting of Integrationmodule in ConSTGAT, which
leverages multi-task learning to optimize the model. In addition,
DeepTravel, STANN, DCRNN, and GAT+Attention use the similar
parameter settings as used by ConSTGAT. For DeepTravel, the
hidden size of the bidirectional LSTM is set to 32. For STANN,
DCRNN, and GAT+Attention, the hidden sizes of the graph neural
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Table 2: Performance of ConSTGAT and other methods for estimating the travel times of the routes.

Taiyuan Hefei Huizhou
Method MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec)

AVG 39.86% 330.39 607.59 54.26% 466.52 872.41 52.65% 352.14 750.63
DeepTravel 24.25% 156.65 309.56 32.10% 160.68 327.75 34.01% 157.85 354.14
STANN 24.80% 167.04 319.94 32.16% 172.04 354.38 32.65% 159.92 362.05
DCRNN 24.28% 163.25 315.74 30.57% 162.28 341.73 30.97% 149.70 347.11

GAT+Attention 22.94% 142.98 283.55 26.63% 132.46 297.30 30.38% 142.47 334.48
ConSTGAT 21.79% 130.48 259.89 25.99% 127.06 289.56 27.10% 118.87 291.81

Table 3: Performance of different spatial-temporal graph neural networks for estimating the travel times of the links.

Taiyuan Hefei Huizhou
Method MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec) MAPE MAE (sec) RMSE (sec)

STANN 52.21% 5.36 24.17 61.62% 7.37 33.19 63.37% 6.65 33.45
DCRNN 55.53% 5.38 24.05 61.00% 6.98 32.76 63.00% 6.40 33.14

GAT+Attention 47.61% 4.76 23.13 46.91% 5.76 30.96 52.39% 6.01 32.66
3DGAT 46.08% 4.42 22.11 46.15% 5.62 30.66 48.72% 5.25 31.80

networks are set to 32, while the hidden sizes of the LSTMs and
attention mechanisms are set to 32.

5.3 Experimental Results
We implemented all the methods except AVG by PaddlePaddle3,
an open-source deep learning platform maintained by Baidu. We
report empirical results and analysis in this subsection.

5.3.1 Overall Evaluation. We compare ConSTGAT with several
baseline methods on three real-world datasets. Table 2 shows the
experimental results. Boldface indicates the best score w.r.t. each
metric. From the results, we have the following observations. First,
ConSTGAT significantly outperforms other methods on all datasets.
AVG is a simple baseline and works the worst. The end-to-end
method DeepTravel performs better as it considers the contextual
information, but it does not consider the graph structures of the
road networks for traffic prediction. Second, among the STGNN
based methods (i.e., STANN, DCRNN, GAT+Attention, and ConST-
GAT) that leverage the graph structures, ConSTGAT significantly
outperforms other methods because it can fully exploit the joint
relations of spatial and temporal information.

5.3.2 Spatial-Temporal Graph Neural Networks. 3DGAT is a spatial-
temporal neural network that can be deployed to other spatial-
temporal applications as well. To verify the superiority of 3DGAT,
we compare it with other STGNNs, including STANN, DCRNN, and
GAT+Attention.

As a general STGNN focuses on estimating the traffic of the links
rather than routes, we also compare the performance of STGNNs
on estimating the travel times of the links. 3DGAT can be seen
as a special version of ConSTGAT with the contextual window
sizew = 0. From the results in Table 3, we can see that 3DGAT is
superior to other STGNNs for the problem of traffic prediction.

3The official site is at https://www.paddlepaddle.org.cn/.

To analyze the traffic correlations between spatial and temporal
information, we draw thematrices of the attention weights. Figure 5
shows multiple cases with different situations. Figure 5a, Figure 5b,
and Figure 5c present the matrices of the attention weights calcu-
lated by 3DGAT, the matrices of the number of the traffic records,
and the matrices of the median historical travel times, respectively.
We compare multiple cases on a specific link l with nine neighbors
(including link l itself). Each row of the matrices indicates a neigh-
bor link, while each column of the matrices indicates a historical
time slot of 5 minutes. For the rows, the 1st row of each matrix
represents the impact of link l itself, and the 2nd to the 9th rows
of each matrix represent the impacts of the adjacent links, where
the 2nd to the 4th rows denote the downstream links and the 5th
to the 6th rows denote the upstream links. For the columns, the
first column indicates the latest time slot, while the last column
indicates the furthest time slot. In Figure 5a, the darker the grid
cell, the more relevant the corresponding neighbor link is to link
l . Figure 5b and Figure 5c are similar. The figures show different
spatial-temporal relations in different situations (e.g., rush hours):
(1) the downstream links have greater relevance to link l than other
adjacent links; and (2) the link with more traffic records or larger
historical travel times plays a more critical role.

5.3.3 Contextual Information. We analyze the effect of the con-
textual information of a route. Figure 6 shows the performance
comparison of ConSTGAT with different contextual window sizes
for estimating the travel times of the links. A model with window
sizew = 0 is equivalent to a segment-basedmethod, which indicates
that no contextual information is leveraged. When window size
w > 0, given link l in a route, the information of links nearby in the
route is used to take advantage of the contextual information. The
experimental results show that the contextual information indeed
helps to improve the performance of the models. The RMSE results
of the models are sensitive to window sizes on datasets of Taiyuan
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(a) The matrices of the attention weight calculated by 3DGAT in different situations.
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(b) The matrices of the number of traffic records in different situations.
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Figure 5: Case analysis of 3DGAT in different situations.

and Huizhou. However, the results of the models with different
window sizes are almost the same on dataset of Hefei.

5.3.4 Robustness. We conduct experiments to validate whether the
masking mechanism could improve the robustness of the models.
The model with train mask rate=10% denotes a ConSTGAT model
that randomly masks 10% of traffic conditions in the training phase,
and train mask rate=0% denotes a model without masking. We
assume some of the traffic conditions are lost and unknown to
the models in evaluation. To this end, we randomly mask 0% to
100% traffic conditions of the test data, which is equivalent to add
some noise. When test mask rate=100%, all the historical traffic
conditions are unknown, and only the contextual information and
the background information are left. From the results in Figure 7,
we can see that the model with train mask rate=10% performs better
than that with train mask rate=0% on all datasets. Moreover, the
gaps between the twomodels on datasets Taiyuan andHefei become
larger with the increase of test mask rate. Although the effect of
the masking mechanism is weaker on dataset Huizhou, the model
with train mask rate=10% outperforms that with train mask rate=0%
in overall performance. This demonstrates that it can improve the
robustness of the models by employing masking mechanism in
model training.

6 CONCLUSION
In this paper, we propose a computationally efficient end-to-end
framework named ConSTGAT for the task of travel time estima-
tion, which focuses on addressing the problems of traffic prediction
and contextual information. To improve the accuracy of traffic pre-
diction, we develop a novel STGNN to obtain the joint relations
of spatial and temporal information by 3D-attention mechanism.
Furthermore, in order to efficiently take advantage of the contex-
tual information, we design a computationally efficient model that
applies convolutions over local windows to capture a route’s con-
textual information and further employs multi-task learning to
improve the performance. In this way, we can take insights from
the segment-based approaches, which is able to preserve high infer-
ence efficiency by computing the travel time of each link in parallel
and in advance. Extensive experiments conducted on large-scale
real-world datasets demonstrate the superiority of the proposed
framework. The successful deployment of ConSTGAT at Baidu
Maps further shows that it is a practical and robust solution for
large-scale real-world services.
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